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Re-embodiment of Honeybee Aggregation Behavior 

in an Artificial Micro-Robotic System
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In this article we describe the re-embodiment of biological aggregation behavior of honeybees in Jas-
mine micro-robots. The observed insect behavior, in the context of the insect’s sensor–actor system,

is formalized as behavioral and motion-sensing meta-models. These meta-models are transformed

into a sensor–actor system of micro-robots by means of a sensors virtualization technique. This allows
us to keep the efficiency and scalability of the bio-inspired approach. We also demonstrate the system-

atic character of this re-embodiment procedure on collective aggregation in a real robotic swarm.
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1 Introduction

Swarm intelligence is a phenomenon found in social
insects (Bonabeau, Dorigo, & Theraulaz, 1999). This
feature of distributed self-organized processes is char-
acterized by the ability of a group of animals to solve
a common problem collectively. Usually, a single
worker animal is not capable of solving a problem
alone, but solving it collectively produces an increase
in the collective fitness of the colony. Examples of
swarm intelligence include the selection of foraging
targets performed by ants and honeybees; the self-
organized nest construction by ants, bees, termites and
wasps; and sorting tasks.

Biological strategies of collective problem solv-
ing can successfully be used in artificial micro-robotic
systems (Sahin, 2004). Micro-robots cannot act indi-
vidually in solving problems (I-Swarm, 2007), because
of their limitations in size, available on-board energy,
actuation, sensors, and communication capabilities.

Technically useful behavior can be achieved not only
when robots coordinate their behavior but also when a
problem-solving strategy is designed for a collective
solution (Kornienko, Kornienko, & Levi, 2004).
Swarm-robotic experiments clearly demonstrated that
increasing the number of robots that work on one prob-
lem in parallel, does not lead to linear or sub-linear
improvement of collective performance (e.g., Jimenez,
2005). Moreover, the growth of a robot population over
some threshold decreases collective fitness because of
overhead and deadlock in communication and coordi-
nation. Simple parallel solutions do not increase the
fitness of a robot swarm.

Biological solutions possess structures that are
required by most problem-solving approaches (Cama-
zine et al., 2003) because of their long-term natural
optimization via evolution. The key issues are effi-
cient and scalable coordination mechanisms, specific
incorporation of global and local information sources
as control signals, and full independence of individual
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behavior, where even a large number of agents do not
hinder each other. Unfortunately, these highly opti-
mized natural solutions cannot be directly applied to
robotic systems. The point is that the individual behav-
ior of each biological agent reflects its own sensor and
actuator system. These systems are too different in
insects and micro-robots to be directly transferred
from one entity to the other. Indeed, we believe the
“silicon–metal” robot cannot, even in the near future,
mimic the sensor and actor capabilities of real biolog-
ical organisms.

To use the advantages of biological strategies for
collective robotic systems, these strategies have to be
re-embodied for another sensor–actor system (Korni-
enko, Kornienko, & Levi, 2005a). Here we encounter
the challenge of retaining the efficiency of biologi-
cally inspired approaches despite their different final
implementation. In this work we demonstrate not only
this particular re-embodiment procedure, but also its
systematic nature by means of a virtualization tech-
nique. This is an important topic for the swarm-robotic
and adaptive-behavior research community as an adap-
tation approach to biologically inspired mechanisms
for real large-scale swarms.

The rest of the article is organized as follows. The
experiments with honeybees thermotactic aggrega-
tion behavior is described in Section 2. Re-embodi-
ment of bio-inspired strategies for robotic system is
presented in Section 3, the experiments in Section 4
and our conclusions in Section 5.

2 Honeybees Thermotactic Aggregation 
Behavior

Thermotactic aggregation behavior found in honeybees
(Crailsheim, Eggenreich, Ressi, & Szolderits, 1999;
Grodzicki & Caputa, 2005; Heran, 1952) is used as
the test scenario. On flat temperature gradients, com-
plex collective behavior is observed. This behavior is
expressed by the formation and disaggregation of
clusters throughout the temperature field. After some
time a single large cluster emerges, which is located at
(or near) the region of optimal temperature (see Fig-
ure 1).

This collective behavior shows some analogies to
other collective behaviors found in animals such as
clustering and aggregating of animals via positive
feedback, and “sorting” problems.

On the one hand is item-sorting behavior, found
in ants, termites and bees (Theraulaz & Bonabeau,
1995). Items such as “food” or “brood” are trans-
ported by the workers from one place to another and
aggregated in several distinct places. Often the work-
ers aggregate items of different kinds in different
places, thus they perform qualitative sorting. In this
way, seeds can be sorted by size or by kind, or brood
stages can be sorted, so that eggs, larvae, and pupae
are separated. The process of sorting and aggregating
items is purely self-organized, but often it is also mod-
ulated by environmental conditions (humidity, tem-
perature, distance to queen etc.). If the aggregated
items are the building blocks of the nest (sand, mud,
etc.), then the same process is used for nest construc-
tion. This is found in the dynamic shaping of the
queen’s chamber in termites and in the radial nest
structure of some ant species (Bonabeau et al., 1999;
Camazine et al., 2003).

On the other hand, animals often aggregate them-
selves (animal sorting) in specific areas. The most
prominent cases are the reproductive swarms and the
winter clusters of honeybees (Myerscough, 1993;
Sumpter & Broomhead, 2000; Watmough & Camazine,
1995). Other examples include: aggregation of ants in
the nest (Theraulaz et al., 2002); chain formation in
ants (Lioni, Sauwens, Theraulaz, & Deneubourg, 2001);
and the aggregation of cockroaches (Jeanson et al.,
2005; Jost et al., 2004), bark beetle (Camazine et al.,
2003), slime-mold amoebas, and several bacteria spe-
cies (Camazine et al., 2003). All these phenomena
work via simple positive feedback loops and they all
have in common that aggregation is performed with-
out any central regulatory unit. These examples provide
bio-inspiration for technical approaches to aggrega-
tion scenarios in real robot swarms.

In this article we propose a biologically inspired
aggregation algorithm for mobile micro-robots based
on thermotactic behavior found in honeybees. Aggre-
gation of honeybees is strongly dependent on the
form of the temperature gradient. The bees find the
point of optimal (high) temperature, based on the
difference between the warmest and the coldest
point in the arena. If the gradient is not very steep,
the bees are not able to determine the uphill direction
in the gradient, and mainly perform a random walk.
Nevertheless, they are still able to find the place of
the optimal temperature, but they can only find it col-
lectively.
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2.1 Analysis of the Bees’ Behavior

We performed experiments to investigate the aggrega-
tion behavior of young honeybees. A cohort of young
(1 day old) bees was introduced into an arena consist-
ing of a comb plate (floor) and four walls. The appara-
tus was set up in a dark room. A temperature gradient
was established using an IR-lamp (bulb) that was
shielded by a SCHOTTfilter. Such a filter allows only
red and IR light to pass through. These wavelengths
are invisible to honeybees, so they were navigating
only in the temperature field and had no visual cues.
An IR-sensitive camera was mounted on top of the
arena. We report only selected data on the behavioral
analysis of the bees, because our goal is to demon-
strate the re-embodiment of the bees’ individual
behavior. The full analysis of the global patterns and
of individual behavior will be published separately.

A representative pattern emerging in the tempera-
ture arena is depicted in Figure 1. For the following

analysis, we defined four concentric zones that were
arranged around the point of optimal temperature. The
arrangement of these zones is depicted in Figures 2
and 3. Zone 1 was located directly below (and around)

Figure 1 A group of 32 bees aggregating on a flat gradient. The bees were released in the colder right part of the are-
na (approx. 25 °C). After some time, the bees aggregate on the left side of the arena, which was 36 °C. During the runs,
bees formed clusters in colder areas of the arena, but most of the bees moved to the optimal place.

Figure 2 Measurements of the temperature field in the
bee arena.
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the lamp, it had the highest average temperature (34.5
± 1.5 °C). Zone 4 was located at the remote end of the
arena and had the lowest average temperature, which
was 25.5 ± 0.5 °C.

The analysis of the emerging aggregation pattern
showed that more clusters were formed in those zones
that were near the optimum point. Near the optimum
place in the arena larger clusters were formed and
clusters survived longer than in remote areas of the
arena (see Figure 4).

We also analyzed individual behavior of bees. We
observed nine randomly selected bees for 10 min and
recorded all behaviors (walking, resting) and all
events (collisions) that happened during the observa-
tion using NoldusObserver.

For the re-embodiment of the honeybee behavior,
the first question we had to answer was: Are the bees

able to discriminate between a collision with a wall
and a collision with another bee? To analyze this we
browsed the observation-logs for all collision events
and classified these events into four categories: (a)
collision with the wall and stop of motion afterward, (b)
collision with the wall and moving on, (c) collision
with another bee and stop of motion, and (d) collision
with another bee and moving on.

As illustrated in Figure 5, the bees were able to
discriminate between other bees and walls, because
they almost always stopped next to other bees; when a
bee collided with a wall, it did not stop there.

The final question was: Why are clusters at lower
temperatures (far away from the optimum) shorter
lived than clusters near the optimum? Our assumption
was that bees have two variables that they optimize:
social contact and temperature. We also assumed that
the resting time of a bee in a cluster depends on local
temperature. Analysis showed that the mean resting
time of bees was indeed longer in the warmer zones
than in the colder zones (see Figure 6).

Based on these findings, we can summarize the
core behavioral algorithm of an individual bee as
depicted in Figure 7.

We assumed that the reason for the non-directed
random walk of bees in our temperature field was that
a flat gradient could not be exploited by a single bee
when moving uphill in the gradient. Perhaps the tem-
perature difference was too small at the bees’ sensors,

Figure 3 The temperature measurements divide the
area into four distinct concentric temperature zones.

Figure 4 Clustering behavior of focal bees (N = 9 bees). We recorded the fraction of observation time that was spent
in a cluster by each focal bee. These data were classified into the four temperature zones and by social contact, that is,
the size of the cluster the bees were located in.
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which are located mainly in their antennae. The bees
move almost randomly and often stop when they hit
another bee. In this way a cluster is formed and by
chance (depending on the density of bees) other bees
can join the cluster. The bigger the cluster is, the more
likely free-running bees are captured by the cluster
and the more unlikely it is that the cluster will
decrease to a size of one. In addition the probability
that bees leave a cluster depends on the local tempera-
ture and not on the local gradient. The warmer it is,
the longer a bee stays in the cluster. Thus, in the initial

phase, many clusters are formed, but over time, sub-
optimal clusters shrink and near-optimal clusters
grow. Finally, only one cluster remains at the optimal
position in the arena.

Next we implemented a distributed algorithm in a
swarm of mobile robots by using a light gradient
instead of a temperature gradient as the environmental
template. We assumed that the resulting collective
behavior of the robot swarm would show the follow-
ing properties, according to the principles mentioned
in Kennedy and Eberhart (2001) and Millonas (1994).

Figure 5 Resting of bees at walls and resting of bees
with other bees. N = 9 observed bees. Bars indicate
mean values, whiskers indicate standard deviations.

Figure 7 Finite state automaton that can describe the observed bee behavior.

Figure 6 Median and inter-quartile ranges of observed
resting times of bees in the four defined temperature
zones. N = 9 observed be
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Stability. The swarm finds a stable final solution. The
solution does not depend on the initial distribution of
robots in the arena. In addition, the measurement of
the sensory data is only performed when the robots are
standing in clusters. In cases where measurement is
very noisy,1 the measurement is performed many
times and then averaged. In the hypothesized algo-
rithm, no sensor data (except collision data) is used
during the moving phase of the robot.

Flexibility. The collective decision of the swarm is
flexible, so after a translation of the place of optimal
light, the robots will collectively find the new optimum.

Scaling properties. The intelligence does not reside
within one single individual. One individual alone
cannot find a solution using this algorithm. The more
individuals that perform this behavior simultaneously,
the faster and the more precisely the optimum solution
is found. The suggested algorithm works better with
higher numbers of bees than with lower numbers of
bees. An algorithm that depends on comparisons per-
formed by individuals (such as a greedy uphill walker),
will work most efficiently if performed by one agent
alone. A collective-based algorithm should work bet-
ter if performed by many agents in parallel.

Computational effort. Other algorithms will require
much more computational effort and sensory abilities
within each single agent. For example, three possible
simple alternative algorithms for the same problem
are discussed (Mletzko, 2006), that all work purely
within each robot and do not involve social interaction
between the robots:

1. Greedy uphill walker: needs two sensors and a
periodic assessment of two temperature sensors.
In addition, a control mechanism is needed that
steers the robot in the appropriate direction.

2. A robot that has just one sensor and exploits the
gradient: this robot requires a memory to store at
least the last measurement and compare it with
the current one. Afterward, a computation of the
gradient with respect to the traveled distance can
be performed to evaluate the gradient. Again, a
steering algorithm to drive the robot uphill is also
needed.

3. A robot that moves randomly and stops if the
desired temperature is achieved. This robot would

still need to evaluate the environment periodically
and will need memory.

In contrast to our suggested bio-inspired algo-
rithm, all three algorithms described above would
additionally need efficient collision avoidance if they
are being performed with several robots in parallel.
The algorithm we propose achieves the same goal but
without needing permanent updating of light-sensor
data, an uphill-steering algorithm, memory, and a sec-
ond sensor. The hypothesized algorithm minimizes
sensor and computation because the local light sensor
data are evaluated only once per collision with another
robot. This is the reason the performance of the swarm
increases with increasing density of robots in the
arena: more frequent collisions lead to a higher update
frequency of sensor data during the initial phase and
the environment is collectively scanned by the swarm
in smaller area intervals. After the initial clusters are
formed, the collision frequency decreases automati-
cally and so the computational effort is also minimized.
After environmental fluctuation, the robots move around
again, as the previous cluster dissolves and a new one
forms, thus requiring less computational effort.

3 Re-embodiment of Individual 
Behavior for a Micro-Robot

3.1 Description of the Jasmine Micro-Robot

For performing the swarm experiments and testing the
embodiment concept we used the Jasmine micro-
robots, see Figure 8. It is a public open-hardware
development with the goal of creating a simple and
cost-effective micro-robotic platform and facilitating
knowledge exchange in the swarm-robotics commu-
nity available at www.swarmrobot.org.

The micro-robot is 30 × 30 × 20 mm and uses two
Atmel AVR Mega micro-controllers: Atmel Mega88
(motor control, odometry, touch, color, and internal
energy sensing); and Mega168 (communication, sens-
ing, perception, remote control, and user-defined
tasks). Both micro-controllers communicate through a
high-speed two-wired TWI (I2C) interface. It has on
board 24 KB flash memory for program code, 2 KB
RAM for data, and 1 KB nonvolatile memory for sav-
ing working data.

The robot has six (60° opening angle) communi-
cation channels (also used for proximity sensing) and
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one geometry-perception channel (15° opening angle)
based on separate IR receivers and transmitters. The
communication area covers a 360° rose-like area with
maximal and minimal ranges of 200 mm and 100 mm
respectively. The physical communication range can
be decreased through a change of sub-modulation fre-
quency. The robot also has a remote control and
robot–host communication (up-link and down-link),
which is isolated from all other channels (through
modulation).

The robot uses two DC motors with internal gears
and two differentially driven wheels on one axis with
a geared motor–wheel coupling. An encoderless odo-
metrical system normalizes the motion of the robot
(the robot is able to move straight forward and back-
ward), and estimates the distance traveled with an
accuracy of about 6% and a rotation angle of 11%.
Jasmine III uses a 3 V power supply (from 3.7 V Li-
Po accumulator) with internal IC-stabilization of volt-
age. Power consumption during motion is about 200
mA, when stationary about 6 mA, and in stand-by
mode less than 1 mA. Power lasts from 1 to 2 hr dur-
ing autonomous work. The robot is also capable of
autonomous docking and recharging, so that the real
time of experiments is effectively unlimited.

Robots are programmed using C with an open-
source gcc compiler. There is a complete BIOS sys-

tem that supports all low-level functions. Moreover,
for quick implementation of swarm behavior there is a
Jasmine-SDK system that includes an operational sys-
tem and high-level functions based on Petri nets, see
Figure 9.

Basically, the operational system executes four
steps repeatedly: read sensor data, perform communica-
tion, make decisions and, finally, execute a plan. The
interruption service takes care of software and hard-
ware interruptions. The plan that a robot has to exe-
cute represents a Petri net consisting of two parts: a
service part (handlers for interruptions) and a user-
defined part (behavioral program for the robot). The
structure of the service part represents an interruption-
vector system with corresponding handlers. The inter-
ruptions (such as touch or low energy) are generated
by the BIOS system, users only need to write the cor-
responding handlers. For further details of construc-
tion and programming (see swarmrobot.org or, for
example, Kornienko, Kornienko, and Levi (2005b)).

3.2 Re-embodiment of Biological Strategy

For re-embodiment we used a four-step methodologi-
cal approach, sketched in Figure 10.

Firstly, we try to formalize the sensor–actor capa-
bilities of natural agents (bees), especially those
which are assumed to be relevant for aggregation.
The observed aggregation behavior of these agents is
then expressed in terms of their sensor–actor capabili-
ties, in other words, expressed as meta-models. Even
in this early step we have to take into account realistic
capabilities of artificial agents.

In the next step, the sensor–actor capabilities of
natural agents are mapped into available sensor–actor
capabilities of artificial agents. Here we have to take
into account technological restrictions, such as char-
acteristics and functionality of sensors, degrees of
freedom (DOF) and holonomicity of the motion sys-
tem, available energy, and so on. This step represents
a virtualization of sensing and actuation. For example,
when some required sensor capabilities cannot directly
be reproduced, they can be indirectly obtained by
other sensors and adapted to the required ones by
software.

The next step represents a trade-off between the
virtualized sensor–actor capabilities of artificial agents
and the original behavioral strategy of natural agents.
Obviously, not all required sensors and actors can

Figure 8 The third version of the Jasmine micro-robot
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even be virtually implemented, so that an adaptation
of the original strategy is required. However, this
adaptation should be performed carefully so as to keep

the structure of the bio-inspired algorithm, because
this structure is expected to fit the requirements of col-
lective systems best.

Figure 9 (a) Structure of Jasmine-SDK; (b) Operational system of the robot.
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After the original behavioral strategy is imple-
mented, experiments can be performed. In some cases
(it happened in our re-embodiment experiment) the
virtualized sensors–actors are still not suitable. In this
case, a new implementation and virtualization of sensors
and actuators should be performed until the emerged
behavior becomes similar to the behavior exhibited by
natural agents.

3.2.1 Representation of Behavioral Rules of Natural
Agents in Terms of Their Sensor–Actor Capabili-
ties For re-implementation of biological strategies,
we first tried to understand the main differences
between the observable behavior of bees and the known
capabilities of micro-robots, as shown in Table 1.

As shown in this Table, there were several princi-
pal sensor–actor issues that made biological aggrega-
tion possible:

• Detection of temperature changes.
• Directional sensing of these changes (to detect a

gradient).
• Detection of other bees and their differentiation

from other objects.

• Behavior in dense clusters with a high degree of
connectivity.

The idea of biological aggregation in terms of the
bees’ sensor–actor system is as follows: when the bees
meet in a region with a temperature higher than ambi-
ent, they walk more slowly. The more bees that join a
cluster, the more bees in this cluster are “blocked” by
other bees and therefore the longer such a cluster can
persist. The cluster is then available longer for other
bees to join, which represents a positive feedback
loop. In this way, the aggregation is a specific rela-
tionship between sensitivity of sensors and holono-
micity of motion.

A topic assumed to have an essential impact on
the global aggregation patterns is the building of
seed points. Such seed points are initial aggrega-
tions of two bees that allow further growth of clus-
ters. The two-bee clusters do not exist for long
because bees are not blocked within them. There-
fore, we assume the existence of a seed point factor:
either the bee density for cluster formation should
be much higher than in a normal case, or bees have
a mechanism allowing two bees to stay together for
a long time.

Figure 10 The structure of the re-embodiment procedure.
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3.2.2 Virtualization of a Sensor–Actor System in
Artificial Agents Replication of the biological aggre-
gation is not directly possible for the following rea-
sons:

• The robots have no ability to sense temperature.
• These micro-robots cannot achieve clusters with

high densities because of their sensor–actor capa-
bilities; this fact can essentially change the behav-
ior during a blocking phase and finally lead to
cluster disaggregation.

These robot shortcomings can be compensated for
by the following virtualization techniques.

1. Instead of temperature, we used a light gradient
that approximately resembles the temperature gra-
dient that was used in the bee experiments. How-
ever, the light intensity differs in several ways
from temperature: light in not cumulative and the
light intensity has a different distribution on the
surface than temperature. This point is demon-

strated in Figure 11a in the preliminary experi-
ments.
To allow a few robots to aggregate, the light region
should be large enough and should not contain IR
spectra. This is why we used a special round
luminescent lamp for generation of the light gra-
dient. The light intensity in the brightest region
(region A) is almost constant across the whole of
that region. The highest variance in intensity is
found in the transient region (region B), while the
rest of surface (region C) again has only small
changes in intensity. In this way, a light gradient
can be established only in the small region B.
For re-embodiment we need sensors that can
detect light intensity with sufficient sensitivity,
but without being saturated (to work equally line-
arly in bright and dark regions). For that we first
used small 3 × 3 mm clear-epoxy encapsulated
solar cells, generating about 0.5 V, 1.9 mA in sun-
light, see Figure 12a. They were connected directly
to the ADC port of the microcontroller. To imple-
ment a gradient-search strategy using one light

Table 1 Comparison between observable behavior of bees and known capabilities of micro-robots.

Bee behavior, sensor–actor system Robot capabilities

Bees are able to differentiate between other bees and 
obstacles. This is achieved by cuticula-bound chemi-
cal substances (taste, smell).

This differentiation is achieved via emission of light 
signals by robots, which mimic the chemical sub-
stances on the bees’ surfaces.

The duration of resting time in a cluster is a function 
of the local temperature.

The duration of resting time in a cluster is a function 
of the local illumination

Perception radius: bees detect other bees at close 
range or only by touch.

A robot can detect another robot by detecting its 
emitted IR-radiation. A robot cannot detect a contact 
with its chassis but this can be simulated by proxim-
ity sensing and rotation.

In flat gradients, the detection of the direction toward 
the temperature optimum seems to be impossible for 
a bee; it performs almost a random walk.

In robots, we do not measure the illumination during 
the movement phase. Our robots move straight and 
turn randomly after a collision with the border of the 
arena.

Bees are able to build a dense cluster with a high 
degree of connectivity.

Robots cannot build a dense cluster, because of the 
2-DOF motion and the need of space for rotation.

Bees walk relatively slowly, 1–2 body lengths/s and 
the motion system can be described as holonomic.

A robot can change its velocity over a wide range; 
however, experiments should be done in low-velocity 
mode. The motion is non-holonomic.

  

http://adb.sagepub.com


Kernbach et al. Re-embodiment in a Micro-Robotic System 247

sensor, the robot can rotate in the radius of
approximately 5–7 cm and save the values of light
intensity. However, after performing the prelimi-
nary experiments we arrived at the conclusion
that this sensor, despite the linearity of the light–
signal transformation, cannot be used in aggrega-
tion experiments. The reason was the low sensi-
tivity to light changes, especially in dark regions.
For example, the robot was not able to identify
the region B, shown in Figure 11a. Therefore,
after the preliminary experiments, we decided to
change the light sensors to the more sensitive type
APDS 9002, produced by Agilent Technologies;
we installed two of them, on a small extension
board (Figure 12b), for further experiments with
gradient light. The comparison of light–signal
conversion for both sensors is shown in Figure 12c.
The solar cell is much more linear and inertial for
the light changes, whereas APDS 9002 is more
sensitive and has a faster reaction time. This sen-
sor is able to detect light changes from an AC
luminescent lamp, so we installed a passive RC-
filter on the extension board and averaged the
obtained values (dispersion of APDS 9002 is much
higher than the solar cell as shown in Figure 12c).

2. To implement the virtual sensor, capable of dis-
tinguishing between objects and other robots, we
used the following strategy. The robot emits the

IR light for proximity sensing and perceives the
IR-light reflected from obstacles in six channels
(see Figure 12a). This emitted IR light can be
sensed by a robot only at a short distance and can
be interpreted as a “contact pheromone,” see Fig-
ure 11b.
When a robot detects IR-signals, it assumes that
some robots are in its local neighborhood. The
robot then emits signals identifiable by other robots.
This strategy underlies the virtualized robot-rec-
ognition sensor, for which the algorithm is shown
in Figure 13.
In this way, by a combination of existing sensors,
specific behavior, and signal processing we are
able to make a virtualized sensor of the required
functionality.

3.2.3 Adaptation of Original Behavioral Rules to
Virtualized Sensor–Actor Capabilities of Artificial
Agents The behavioral pattern, shown in Figure 7,
can be adapted to other motion capabilities of the
robot (in the cluster-building part, especially seed
points) and to other sensing capabilities (primarily the
waiting parameters) as follows.

1. For adaptation of the algorithm for establishing a
seed point in robotic experiments, the robots have

Figure 11 (a) Light gradient in the preliminary robotic experiments; (b) IR-light emitted by robot during proximity sens-
ing (image is taken by IR camera).
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to meet and stay together long enough to allow
other robots to join the cluster. We can analyti-
cally calculate this relation by using several anal-
ogies to the molecular-kinetic theory of ideal gas,
such as diffusion in ideal gas. We introduce the
following notation: the sensing radius R (Rs, Rc

are collision avoiding and communication radii);
lc the length of free path from the start of motion
to the first communication contact; ls the length of

free path from the start of motion to the first colli-
sion-avoiding contact; nc and ns are the number of
communication and collision-avoiding contacts
respectively; Sc and Ss are the areas of the “bro-
ken” rectangles created by the motion in time
interval t with Rc and Rs; and finally the robot’s
motion velocity v. We do not consider collision
avoidance caused by obstacles, changes in the
robot’s velocity or behavior during collision

Figure 12 (a) The first version of the light sensor (solar cell) installed directly on the robot. Also shown are IR emitters
and receivers. (b) The second version of the light sensor (sensor APDS 9002), installed on the robot as an extension
board. (c) Sensitivity and nonlinearity of the first and second version sensors in the light–signal transformation. The light
at different distances from the luminescent lamp was measured (as shown in Figure 11a, the distance between the are-
na surface and the lamp was 12 cm and ambient light was off); the values of the solar-cell sensor are multiplied by 6. In
the signals from APDS 9002 we can easily recognize the corresponding regions from Figure 11a.
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avoidance. This simplifies calculations and we
expect that this approximation error is not large
for small clusters. Figure 14 illustrates this idea.
We differentiate between communication con-
tacts and collision-avoiding contacts. For further
calculation we use collision-avoiding contacts
because they correspond more closely to the bio-
inspired approach. Firstly, we are interested in the
number of two-robot contacts, ns, that happen dur-
ing the movement. This value is equal to the aver-
age number of robots in the area Ss,

ns = SsDsw, (1)

where Dsw is the swarm density. We assume that
the robot’s rotation radius is small (robots can
rotate in one place), so that we can neglect the
area of fractures. In this case Ss = 2Rsυt. Dsw can
be calculated as the number of robots, N, in a
swarm divided by the area available for the whole
swarm (Ssw – NSr):

(2)

where Ssw is the whole area and Sr is the area occu-
pied by robot itself. In relation 2 we assume only
one robot moves while the others are motionless.
The more exact relation for the case when all
robots move differs from 2 only by the numeric
coefficient  (as proved by Maxwell for a diffu-
sion in ideal gas). For further calculation we use

(3)

Obviously, the two-robot contact (ns = 2) will
happen during the time t2 and after this, the

Figure 13 Algorithm of the virtualized sensor that is able to differentiate between another robot and a passive object
without communication between robots.

Figure 14 Motion path of a robot with communication
and collision-avoiding contacts.
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number of available robots is decreased by one
(after contact the two robots stop and are consid-
ered as one robot of double size). The time for the
next contact can be calculated by using relation 3
when N = N – 1; we are interested only in a small
number of total contacts (when the number of
robots in a cluster is smaller than the number of
available robots, we can skip changes in behavior
caused by non-holonomic motion). We can
express the total time tk of k-contacts (N/2 > k > 2)
as

(4)

For the calculation, we took Ssw = 1,000 × 1,000
mm2, Sr = 26 × 26 mm2, Rs = 100 mm, υ = 50 mm
s–1, and N = 10. For two-robot contact we get typ-
ical times for t2  14 s, t3  37 s, t4  72 s, that is,
robots do not move 23–35 s and wait until the
next robot comes into the cluster. The dependen-
cies between t, Rc, and N for different values are
shown in Figure 15. These periods agree with
experimental data from the preliminary experi-
ments with micro-robots.
As indicated by the calculation, the seed point for
building clusters can appear when robots wait at
two-robot contact for at least 23–35 s (this time
can decrease with increasing swarm density). The

waiting (resting) time matches very well with the
sensor-related adaptation of the algorithm.

2. For adaptation of the original bee algorithm shown
in Figure 7 for other sensors, we measured the
light gradient in the robot arena (as we measured
the temperature gradient in the honey bees). Fig-
ure 16 shows the results of these measurements.
The light gradient in the arena (Figure 16) is very
similar to the temperature gradient in the honey-
bee arena (Figure 2). The main difference is that

tk

Ssw NSr–

2 2Rsυ
----------------------

i
N i– 2+
---------------------.

i 2…k=

∑=

–∼ –∼ –∼

Figure 15 (a) Plot of Equation 4; dependencies between t and Rc for k = 2,3. (b) Plot of Equation 4; dependencies be-
tween t, Rc, and N for k = 2 … 5. Rc is calculated in mm, t in seconds.

Figure 16 Light gradient in the robotic experiments are-
na. Dots indicate mean values (N = 12 per measure-
ment), whiskers indicate standard deviations. The
amount of noise in the sensor data is clearly visible.
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the temperature scaled between 25 °C and 36 °C
while the measurable light intensity values were
between 0 and 145. For a successful embodiment,
we developed a conversion rate between these
two measurements (see Equation 5):

temperaturelocal = 0.0759 * light_value + 25.0. (5)

The duration of the bees’ stays in the temperature
zones (see Figure 6) showed a clear nonlinear effect
with the longest resting times in Zone 1. To incor-
porate this into the robot algorithm, we imple-
mented a nonlinear stimulus–response curve, which
is depicted in Figure 17.

4 Implementation of Aggregation 
Strategy for a Micro-Robotic Swarm 
and Performing the Experiments

The structure of the algorithm for robot behavior is
shown in Figure 18.

After the robot encounters an obstacle, the corre-
sponding interruption is generated. A robot attempts to
determine whether this obstacle is another robot or
some passive object. To do this, it waits approximately
200 ms for the collision-avoidance signals of other
robots in the environment. These received IR-signals
indicate the local presence of another robot (the robot
itself also emits such signals during the detection
phase). When there are no such signals a passive object,

which cannot emit IR signals, is indicated. When the
collision contact is another robot, the local light inten-
sity will be measured. The robot reads several values
from both sensors and then averages them. Depending
on the value received (through interruption), the robot
sets its timer according to the curve depicted in Figure
17 to wait for 50–60 s without motion, but still emitting
IR signals to be identifiable as a robot. This allows the
creation of a seed point for further clusters. After this
time the robot turns back to the cluster/robot and starts
a moving again. When there are other collision con-
tacts, the whole procedure is repeated. In this way, the
robot remains blocked within the cluster.

We performed two series of experiments: the pre-
liminary experiments, where we looked for appropri-
ate sensors (see Figure 11a) and the final experiments,
shown in Figure 19.

The final experiments included a series of trials
with 1–18 robots, equipped with the extension sen-
sors board, as shown in Figure 12b. As in the prelim-
inary experiments, we used a round luminescent lamp,
which was mounted about 40–50 cm above the arena.
The ambient light was also generated by tube-lumi-
nescent lamps about 3 m above the arena. The size
of arena was 140 × 115 cm. Figure 20 illustrates the
images from an experiment using three robots. It is
clear that there was no clustering at the target loca-
tion. In follow-up experiments, we increased the
number of robots step-by-step. The critical swarm
density, where aggregation at the target place was
initiated, was reached with nine robots. In Figure 21
we show pictures from an experiment with 15 robots
in which the robots aggregated quickly at the target
location. In further experiments we moved the lamp
to different positions of the arena, the robots disaggre-
gated and re-aggregated at the new location. A video
of these final experiments can be downloaded from
www.swarmrobot.org.

4.1 Aggregation Time and Scalability of 
Robot Behavior

During preliminary, final, and post-final experiments
we performed over 100 trials (the final experiment
with 18 robots was used as a demonstrator in a
museum). Additionally, a few post-final experiments
with an extra-large robot arena (3 × 3 m) and the
number of robots 105, 75, 50, 35, and 25 were per-
formed (Figure 22).

Figure 17 The stimulus–response curve we used in our
robot experiments. The higher the sensory values of the
light sensor were, the longer the robot waited in a cluster.
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After performing these experiments we identified
three main factors influencing the aggregation. The
first is the number of collision contacts, ns, defined by
the relation between swarm density Ds, perception
radius Rs, and velocity of motion υ, and expressed by

relation 3. Increasing ns (for example by increasing
Ds, Rs, or υ) leads to faster aggregation. When ns

remains constant, performance of the aggregation is
expected to also be constant (taking into account two
other factors). The second factor is the area, Ssp, and
the position of the light/temperature spot. We assumed
that aggregation is successful when about 75% of all
robots are located in one cluster under lamp(s). How-
ever, when Ssp < 0.75NR π, robots do not have
enough space for aggregation and this factor could be
an environmental bottle-neck. In this case we count
aggregation as successful when the area under lamp is
occupied by robots even when < 75% of all robots are
located there. The position of the light spot on the
arena defines how quickly the seed point can be cre-
ated. For example, 18 robots require about 1 min for
aggregation with the light spot in the corner area. In
contrast, 15 robots require only 30–40 s with the light
in the middle of the arena. The last factor, which influ-
ences the performance and scalability, is the waiting
time in clusters. Robots situated in the middle of a

Figure 18 (a) The structure of the algorithm for robot behavior originating from the biological observation and adapted
for robots sensor–actor system. (b) Large-scale swarm (max. 135 robots.)

Figure 19 Final experiments with 1–18 micro-robots.

s
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cluster are blocked by other robots and therefore
remain in this cluster. However, robots in boundary

areas can easily leave the cluster and this leads to dis-
aggregation. When the waiting time is too short, small

Figure 20 A group of three robots navigating with our algorithm in the arena. They were not able to find the place with
the optimal illumination, which was located in the upper left corner of the arena.

Figure 21 A group of 15 robots navigating with our algorithm in the arena. They quickly and collectively found the opti-
mal spot, which was located in the upper left corner of the arena.
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initial clusters will always disaggregate, so that robots
do not find an optimum. When the waiting time is too
long, an optimal cluster will also not appear because
non-optimal clusters will not disaggregate. The maxi-
mal waiting time is experimentally chosen as 1 min.

The scalability of bees aggregation behavior was
tested by performing the experiment with 16 and 32 bees
for the same arena conditions and temperature regions.
For the case of 16 bees the averaged aggregation time is
about 128 s. For the case of 32 bees, the area of tem-
perature Zone 1 (see Figure 2) seems to be too small
for the quota of 75%. Bees are aggregated very closely
to each other (clearly visible in Figure 1) so that the
approach expressed by relation 3 cannot be applied to
the estimation of scalability. For example, the quota of
75% for 32 bees corresponds to the aggregation time of
217 s. We can see that there is something wrong with
this value, because increasing the number of swarm
agents in a subcritical domain of swarm density should
improve the performance, that is, it should be < 128 s
(as demonstrated by the robotic experiments). There-
fore, we consider success here as the quota of ≈ 33%
(≈ 69 s), which approximately corresponds to 75% in
the case of 16 bees. Both values are shown in Table 2.

To test the scalability of the algorithm, the
number of robots (18, 25, 35, 50, 75, 105), the area of
the light spot (Ssp = 4,025 cm2, 11,250 cm2, 22,500 cm2)
and robot arena (Ssw = 140 × 115 cm2, 300 × 300 cm2)
are increased step-wise. We repeated each experiment
on a small arena Ssw = 140 × 115 cm2 7–8 times and on
a large arena Ssw = 300 × 300 cm2 at least 2–3 times,

and calculated averaged aggregation time for each
type. Although this number of repeats is statistically
low, large-scale experiments are difficult to repeat for
technical reasons.

For 15–18 robots in an arena Ssw = 140 × 115 cm2

and Ssw = 4,025 cm2 light spot the aggregation time
was 30–70 s in almost all experiments (depending on
the position of the light spot, averaged 65 s). The
aggregation time for 25 and 35 robots in the same
arena and light spot is decreased to 25–40 s (however
in this case > 25% of robots moved outside of the light
spot). The aggregation time for the arena size 300 ×
300 cm2 with 35 robots and area of the light spot Ssp =
11,250 cm2 was about 2.5 min. Further increasing the
number of robots (50, 75, 105) in the same area of
robot arena and light spot sped up aggregation to 40 s
(however, here also > 25% of robots moved outside of
the light spot).

The area occupied by aggregated robots is usually
larger than expressed by 0,75NR π, because the
robots build clusters of arbitrary geometrical forms.
We can estimate this area as approximately double
that expected. Therefore, the large number of robots
(50, 70, 105) occupied about 15,079 cm2, 21,111 cm2,
and 31,667 cm2 respectively. This is much larger than
the spot area. We therefore decided to double the area
of the light spot (Ssp = 22,500 cm2) by using additional
lamps, see Figure 22a. In this way the area of a light
spot was about 25% of the whole arena. This led to
faster initiation of seed point(s) and faster aggregation
for small N; however, the averaged aggregation time

Figure 22 (a) Extra-large robot arena (3 × 3 m) used in post-final experiments; (b) Large-scale swarm (135 robots) in
post-final experiments.
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for large N remained similar to the value of a smaller
light spot. The experimental data is presented in
Table 2.

Using data from this table we can calculate sev-
eral scalability metrics for different conditions. We
already mentioned that one of the most important
parameters is the number of contacts ns, expressed by
relation 3. We calculate ns for the aggregation time in
each case. When the behavior is scalable ns should
provide similar values for different experiments. The
value ns/t can be also of interest because it points to
the number of contacts per second. Finally, when Ssw

 NSr (the arena is much larger than area occupied by
all robots), we use the swarm reactivity as a metric,
expressed by

(6)

The value ϕ has a physical dimension 1/t and demon-
strates internal inertness of the swarm. We summarize
the values of ns, ns/t, and ϕ in Table 3. 

We see that ns fluctuates around the mean of
29.15. These fluctuations can be explained by a sys-
tematic inaccuracy in the experiments (e.g., estima-
tion of aggregation time was made by an operator
observing the behavior) or by variation of parameters
in robots (e.g., robots do not always move with a con-
stant velocity of 300 mm s–1). However, this small fluc-

tuation around 29.15 for very different Ssw, N, and t
means a good scalability of the behavior.

The ns/t demonstrates which systems are fastest
and slowest; for example, the fastest system is the
case of 35 robots in a small arena. It is interesting to
note that the case of 16 bees is equivalent to the case
50 robots in a large arena.

Finally, the value of ϕ characterizes three differ-
ent classes of swarm systems: bees in a small arena,
robots in a small arena, and robots in a large arena.
We see that inertness of robots and bees in a small
arena is similar, it means that we can achieve similar
performance of the system at similar input values. In
contrast, the case of a large arena indicates 4–6 times
worse performance of this system: in order to achieve
the same value of ns we need 4–6 times more robots
(or more time).

5 Conclusion

We believe that the proposed algorithm is one of
the simplest possible optimum-finding algorithms
for swarm robotics (concerning algorithmic complex-
ity, computational efforts and sensory abilities). In
addition, this algorithm shows interesting scaling
properties because the inter-robot collisions enhance
collective performance in contrast to usual algorithms
where such collisions are seen as counterproductive
events. We investigated these scaling properties of

Table 2 Collection of experimental data from all experiments: Ssw, arena size, m2; Ssp, spot size, m2; Sr, size of the
robot/bee, mm2; Rs, perception radius, mm (perception area of a bee is about 17 × 8 mm, we approximate this as a per-
ception radius 6 mm in sense of (3)); υ, velocity of motion, mm s–1(for bees 6–60 mm s–1, for robots 250–300 mm s–1; we
used maximal values for further calculations).

Bees N of Bees/Aggregation time (s)

Ssw Ssp Sr Rs υ 16 32 32

0.0665 0.01662 66 6 60 128s 69 (≈33%) 217s (75%)

Robots N of Robots/Aggregation time (s)

Ssw Ssp Sr Rs υ 15 25 35 50 70 105

1.61 0.4025 900 60 300 65s 38s 25s

9 1.125 900 60 300 148s 98s 73s 48s

9 2.25 900 60 300 129s 92s 69s 45s

>>

ϕ
2 2Rsυ

Ssw
--------------------.=
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aggregation behavior analytically and numerically. It
was demonstrated that ns (the number of contacts) is the
most appropriate value to estimate the scalability class
of swarm algorithms. For example, ns varies around
29.15 for all performed experiments, indicating the
super-scalable class (Constantinescu, Kornienko, Korni-
enko, & Heinkel, 2004) of this algorithm. The value of
ns can also serve as a performance metric (instead of
pure aggregation time t) because it is independent of
such factors as arena size, number of robots and others.
We should also note several difficulties encountered
in performing the experiments on scalability. For
example, it is almost impossible to keep the same
swarm density in the light/temperature areas for dif-
ferent N of robots/bees. This, with other factors,
impacts accuracy of ns.

The algorithm shows that the robot-to-robot inter-
actions are essential for achieving the common goal,
but the algorithm does not involve any robot-to-robot
communication which means no messages are passed
from one robot to another. So an almost paradoxical
(at least a counterintuitive) situation emerges: a swarm
of non-communicating robots works more efficiently
in larger groups than in smaller ones. In addition, the

algorithm has all the properties that characterize swarm
intelligence. These include: emergence, flexibility,
robustness against perturbation, robustness against ini-
tial conditions, and robustness against sub-optimal solu-
tions (local optima).

Another important result is the systematic re-
embodiment of behavioral patterns from natural
agents into artificial ones. Through re-embodiment
we can keep the structure of the original approach and
in this way we can keep its efficiency and scalability.
However, after performing the preliminary and main
experiments, it was evident that even this simple
aggregation algorithm requires specific sensor–actor
systems: the behavioral mechanisms of collision avoid-
ance in dense clusters should be matched with the cre-
ation of seed points and, in turn, with the resting time.
The resting time itself is a function of temperature. In
this way, the actuation is closely related with the sen-
sor input. The reproduction of natural sensors–actor
couplings into artificial ones is the most important
step of the re-embodiment procedure. We demon-
strated that the virtualization of sensor–actor systems,
where for example temperature was replaced by light
and chemical recognition by passive sensing of the

Table 3 Values of ns, ns/t, and ϕ in dependence of Ssw, N, and t for bees and robots.

Ssw N t ns ns/t ϕ Remarks

1 0.0665 16 128 31.86 0.248 0.0153 bees

2 0.0665 32 69 34.91 0.506 0.0153 bees for ≈ 33% quota

3 1.61 15 65 31.09 0.478 0.0316 robots

4 1.61 25 38 30.46 0.801 0.0316 robots

5 1.61 35 25 28.22 1.128 0.0316 robots

6 9 35 148 29.40 0.198 0.00565 robots, Ssp = 1.125 m2

7 9 35 129 25.63 0.198 0.00565 robots, Ssp = 2.25 m2

8 9 50 98 27.85 0.284 0.00565 robots, Ssp = 1.125 m2

9 9 50 92 26.15 0.284 0.00565 robots, Ssp = 2.25 m2

11 9 70 73 29.11 0.398 0.00565 robots, Ssp = 1.125 m2

10 9 70 69 27.51 0.398 0.00565 robots, Ssp = 2.25 m2

12 9 105 48 28.81 0.600 0.00565 robots, Ssp = 1.125 m2

13 9 105 45 27.01 0.600 0.00565 robots, Ssp = 2.25 m2
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IR-light, can be successful in terms of their functional-
ity and efficiency. However, this step is critical to the
technological restrictions imposed on real robotic sen-
sors and actuators. Because biological sensing and loco-
motion is much more advanced than the current state of
the art in robotics, the successful re-embodiment of bio-
logical behavior in a robot represents a trade-off
between algorithms and hardware development.

Re-embodiment raises two further questions that
still remain unanswered. The first relates to the struc-
ture of the behavior rules shown in Figure 10. We see
that each behavioral pattern is developed and opti-
mized for a specific sensor–actor system (which also
includes sensor data preprocessing). We assume that
the most complex parts of systems that generate
behavioral patterns are dedicated to the sensor–actor
coupling, at least this appears evident in the robotic
case. We ask ourselves about the existence of a “hard-
ware-free” behavioral pattern, which should represent
a kind of “pure intelligence,” being free from any lim-
itations. The question is whether or not we will in
future be able to derive such a pure intelligence by
means of sensor–actor virtualization.

The second question is about bio-inspired and
tech-inspired research. The experiments were clearly
motivated by the observation of bees. However, dur-
ing the experiments with robots we identified several
unexplained phenomena, where bees behave differ-
ently than the robots (e.g. cluster re-joining). This dif-
ferent behavior points to some latent factors, which
further experiments with bees should clarify. In this
case we see a feedback to biological experiments which
can be denoted as tech-inspired. Both bio- and tech-
inspired research can supplement each other in better
understanding how collective intelligence emerges
from natural and artificial systems.

Notes

1 For example in the extreme parts of the sensor range: at
very low illumination or at very high illumination when
sensors are almost saturated.
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