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emergent behavior in artificial swarms
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Abstract This paper concerns the emergent properties of collective ro-
botic systems with imposed microscopic and macroscopic constraints.
These constraints dramatically impact the emergent behavior of collec-
tive systems so that creating desired emergence becomes very challenged.
In this paper we present the top-down swarm embodiment methodology
that allows obtaining desired collective behavior in systematic way.

1 Introduction

In order to go beyond the current state of the art in the realization of ro-
botic swarms, the European Commission has granted funding to the I-SWARM
project. This project is going to produce a large group of micro-robots (about
1000 micro-robots with the proposed size 2 × 2 × 1 mm) that are capable to
mimic some aspects of social insects. Such a robot swarm is expected to per-
form a variety of applications, including micro assembling, biological, medical or
cleaning tasks.

The micro-robots, due to small size, are very restricted in hardware capabili-
ties, like distance measurement, navigation or communication. These constraints,
arising on the microscopic level, hardly limit the emergent behavior. Not only
microscopic, but also macroscopic constraints influence the collective behavior.
This kind of constraints arises in technically useful behavior because of necessity
to emerge collective activities in specific order, with specific parameters.

Both types of constraints change the problem of collective behavior. The
question is not only to find the swarm-controlling mechanisms, allowing a so-
lution of typical problems like foraging or division of labors [1]. The question
becomes of how to modify and even how to create new mechanisms that gener-
ate the desired emergent behavior satisfying all constraints. Trough many sci-
entific domains contribute to solution of this problem, we fail to find a common
methodology that consolidate approaches from these domains. Without this, the
derivation of swarm mechanisms is often performed in ”trial and error” way. The
given work suggests the top-down methodology using a swarm embodiment, that
enable a systematical derivation of the desired emergent behavior for artificial
swarm. The suggested methodology has been tested in real experiments with the
group of micro-robots Jasmine (large prototype in the I-Swarm project).
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2 Microscopic and macroscopic constraints

As mentioned in the previous section, artificial robotic swarms are constrained
from microscopic and macroscopic sides. The microscopic constrains originate
mainly from a construction of a robot (see e.g. the micro-robot Jasmine in Fig-
ure 1(r)). The most important constraints are the communication and percep-

Figure 1. (r) Micro-robot Jasmine; (l) The assembling plan in the form of Petri-net.
Pi are phases, where ti are transitions with the shown conditions.

tion radius, type of sensors, time of autonomous work and so on. These individual
capabilities essentially impact a group behavior.

Macroscopic constraints arise if the collective systems has to emerge the tech-
nically useful behavior. The appearance of these constraints can be demonstrated
on a simple assembling example, where robots push three different objects into
one defined construction. Assembling of the object has be performed only in the
specified order, shown as the Petri-net in Figure 1(l), otherwise the desired con-
struction will be not obtained. The plan consists of 7 steps, shown as the phases
p1-p7 with the corresponding positions and rotation angles. The phases p1, p3

and p6 can be started in parallel, other phases have to be proceeded sequentially.
The phase p7 can be started only if p5, p6 are finished.

An agent starts transportation or rotation only if its position coincides with
the position of an object. This object has not to be processed in this moment
by other agents. Moreover the operations defined by the plan have to be applied
to the given object only one time (two last problems can be solved by marking).
We denote these restrictions as the local restrictions Cl. Each robot looks for
objects Obi in its own neighborhood and mote to them and reads the mark. If
the local and global restrictions are satisfied, the agent executes the required
activities. The local rules of an agent have the following form:
- Ob=look for (visible objects); read mark (Ob);

- if (constraints(Ob)) do (Activity);

Agents can start assembling from different initial phases of the plan. Two gener-
ated agent-agent cooperation patterns with different initial phases are shown in
Figures 2(r) and 2(l). Since these patterns are of different length, we can choose
a short assembly by adding rules as e.g.
- at choice → chose phase with smaller number;
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The cooperation, shown in Figure 2, emerges without being preprogrammed.
Emergence arises because of interactions between agents that are controlled by
local rules. The local and global constraints are not only introduced by these
rules, but also through parameterization. In the assembly, each operation is pa-

rameterized by data from the plan. Without knowing these parameters, agents
cannot accomplish assembly. Moreover, the emergent cooperation can be of dif-
ferent efficiency and we face the problem of optimizing the emergent behavior.

Figure 2. Examples of emergent ”agent-agent” cooperation, generated by the local rules.
(r) Initial phases of the plan are (Ag1)init = p6 and (Ag2)init = p3; (l) Initial phases
are (Ag1)init = p1 and (Ag2)init = p3.

The microscopic and macroscopic constraints as well as parameterization
and optimization of the emergent behavior appear on the swarm level. All these
constraints are closely related with one another and hardly limit the emergent
properties of collective systems. In trying to derive the desired emergence, we
permanently confront with these constraints so that we identify the problem of

constrained emergent behavior as one of the main problems in artificial swarms

(from the viewpoint of controlling). Without systematic procedure, that allows
involving constraints into the collective behavior, the derivation of desired emer-
gence is performed mostly ”by trial and error”.

3 Top-down methodology

The local rules are in charge of artificial self-organization that appears the desired
emergent behavior. There are two strategy to derive such rules. At the bottom-
up strategy, the local rules are first programmed into each agent. This rule-
based programming [2] originates from the domain of parallel and distributed
computing. The general problem of bottom-up approach is that we cannot say
in advance, which emergent behavior will be generated by the chosen rules.
Especially if this behavior is bounded by constraints. The origin of this problem
lies in enormous complexity of nonlinearly interacting system. As pointed out
by some authors (e.g. [3]) ”A true emergent phenomenon is one for which the

optimal means of prediction is simulation”. It means that in the worst case we
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have to perform really many simulations, gradually changing the local rules, till
we receive the desired collective behavior.

Another methodology, consisting in the top-down strategy, shown in Figure 3.
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Figure 3. Top-down strategy of
derivation of local rules.

Using the top-down strategy, the
derivation of local rules starts from a
definition of the macroscopic pattern
Ω and the corresponding constraints.
Macroscopic constraints are incorporated
directly into Ω, where as microscopic
ones influence the so-called ”distributing”
transformation. The pattern Ω can be de-
fined in statical way, as shown in Fig-
ure 1(l), or in evolutionary way, as e.g.
to optimize some value. If the global pat-
tern is determined evolutionary, we can
use for ”distributing” transformation sev-
eral heuristical algorithms to produce a
sequence of agents steps Sk that allows
achieving the pattern Ω [4].

From agent’s viewpoint, each agent
Agk has a sequence of activities Sk al-
lowing the common group to accomplish
Ω. Remark, that all constraints as well as
communication are implicitly contained in Sk. Now we analyze Sk in order to
derive the local rules Rk, that can generate this sequence of activities. More gen-
erally, to derive the local rules Rk, we can calculate Kolmogorov complexity of
sequence Sk (finding the smallest grammar [5]). In this way can formally derive
the set of these rules that defines a cooperation between agents and allows the
agents’ group jointly to solve the common task Ω.

3.1 Embodied top-down computational approach

In this section, we show that local rules can be obtained in the mentioned top-
down way. Moreover these rules can be integrated (embodied) into specific mo-
tion/sensor systems. We consider here a spatial clusterization as a basic form
of the macroscopic patterns Ω. Particulary, such a cluster can be a n-polygonal
shape determined by distances D between corresponding corners. We introduce
the local connectivity degree Lcd as the number of neighbor agents within the
visibility radius Rvis. Global connectivity degree Gcd =

∑
Li

cd is the sum of all

local Li
cd and the global compactness Φ is defined as Φ =

∑N

i

∑N

j Dij , where
Dij is a distance between agent i and agent j, N is the number of agents. In
this way, the macroscopic pattern Ω is determined as min (Φ). The evolutionary
algorithms, optimizing Φ, can have the following form
- do {one step in all directions; calculate global compactness;}
- choose the step which minimum of global compactness;
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In the case of obtaining n-polygonal spatial formations we introduce additional
constrains:
- D=distance(itself-target[pattern]); {do (virtual Activities);

- D[i]=distance(itself and target[from pattern]);}
- j=find minimal(delta=D-D[j]); do (Activity j);

This algorithm produces a sequence of agents steps Sk allowing building the
shapes from Ω. Now we analyze Sk to derive the same behavior, but without
using Φ. In Figure 4 (r), (m) and (l) we plot the global connectivity and com-
pactness, the command of the robot motion controller and, finally, local sensor
information. We see that the behavior of whole swarm consists of two phases,
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Figure 4. (r) Global compactness Φ as the function of time; (m) Commands (in the
8-directional DOF motion system) of an agent in the same time range; (l) Sensor
information (local connectivity degree Lcd in each direction) represented in parallel
hierarchical coordinates when an agent decides to move in the direction “6”.

that are characterized by different slope of compactness. In the first phase, global
compactness rapidly decreases (the global connectivity increases). All neighbor
agents during the first phase move in the same direction. In this way, they build
small clusters with a homogeneous direction of motion. The size of these lo-
cal clusters grows whereas the number of them decreases. In the second phase,
the rate of building decays and robots no longer move homogeneously. In this
phase agents primarily decrease distances only in the cluster. As follows from
Figure 4(l), agents decide to move in the direction with the most high local
connectivity degree.

In trying to reproduce this behavior (without using Φ), we faced the question
of how to replace the gradient (introduced by the global compactness Φ). In the
experiments we used two values: the degree of local connectivity Lcd and a
biologically motivated mechanism based on pAMP-gradient waves, emitted by
the fungi Dictyostelium discoideum during aggregation phase [6]. In the last case,
instead of the pAMP-gradient waves we introduce the following dynamical value
kn based on the Lcd: kn+1 = log(

∑all neighbors

i=1
ki

n) with k0 = Lcd, where n is
the simulation step. The value kn grows the more rapidly, the larger the cluster
is. Based on the values Lcd or kn, robots can decide where the larger cluster is
and move in this direction.

The algorithm reproducing the one-cluster-building behavior has the follow-
ing form (D-direction of motion, nR - neighbor robots with highest Lcd or kn,
Dist - distance to nR, CP - adjustment parameter):
if (Lcd==0) D=rand; else D=(D of nR); if (D(nR)>CP) D=(D to nR);
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where (D=(D of nR) and D=(D to nR) are the mentioned two phases of motion.
In Figure 5 we compare the global compactness for the cases of single-phase
(only the second phase) motion and two-phases motion based on Lcd and kn.

As followed from Figure 5, the one-phase motion, that is intuitively the
most evident one, builds only small local clusters without bringing them into
the bigger one. Both two-phases mechanisms perform building the cluster.
However the efficiency of Lcd and kn based mechanisms is different. The bi-
ologically motivated mechanism requires less time (and energy) to converge.
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Figure 5. Comparison of the global com-
pactness for the cases of: (1) single-phase
motion, (2) two-phases motion based on
Lcd and (3) two-phases motion based on
kn. All curves represent typical cases of be-
havior.

During derivation of local rules Rk

we assume some basic functionality
Fb, like message transmission or envi-
ronmental sensing. However the per-
fectly working simulative sensors es-
sentially differ from real ones. In this
way the swarm behavior, generated
by Rk, often diverges from our expec-
tations. To get round this problem,
we involved the embodiment concept.
This says that the same functionality
can be implemented in many different
ways: Rolf Pfeiffer demonstrated that
an ”intelligent behavior” can even be
implemented when using only some
properties of materials [7]. Embodied
functionally is also often implemented
in some ”unusual” way. For example a
robot can get a distance to neighbors
by sending an IR-impulse and measuring a reflected light. However distances can
also be obtaining during communication by measuring a signal intensity. This
simple trick saves time and energy: such an unusual functionality is a typical
sight of embodiment.

More generally, embodiment means that the system possesses the desired
functionality Fb, but this functionality is in a latent form, ”it is not appeared”.
This offers a way of how to get basic functionality for the local rules Rk: the
local rules have to influence the hardware development of a robot. The swarm
embodiment takes then the following form: definition of the macroscopic pat-
tern Ω and the corresponding microscopic/macroscopic constraints; derivation
of the local rules Rk; trade off between required functionality and adjustment of
hardware; change of the hardware. The local rules have always been considered
as a pure software components, however now they are a combination between
software and hardware. We can say that in this way the local rules for the whole

swarm behavior are embodied into each individual robot.

The embodiment in sense ”hardware → rules” has been demonstrated in the
work [8]. There we analyzed a dependence between agent’s movement and sen-
sor data for the derived Sk. Optimizing local rules to specific motion system,
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the “top-down”-derived rules can be of 5-20% more efficient than correspond-
ing “bottom-up” rules (see Figure 6(r)). The embodiment in sense ”rules →
hardware” has been demonstrated in the work [9]. In that work we considered
context-awareness-related collective capabilities of interacting robotic group and
incorporate several local rules into specific sensor system of real micro-robots.
The achieved results essentially improve collective robotic behavior and reduced
required communication and computational efforts.
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Figure 6. (r) Comparison between efficiency (the number of steps, needed to reproduce
the shapes) of ”top-down” and ”bottom-up” rules; (l) Preliminary experiments with a
small group of micro-robots Jasmine.

We performed several preliminary experiments with a small group of micro-
robots Jasmine. The goal was an ”embodied top-down” collective perception
and spatial information processing (see Figure 3(l)). The development of collec-
tive behavior involved a definition of macroscopic patterns, derivation of local
rules and redesigning of hardware components. As demonstrated by these ex-
periments, the proposed approach allows creating a specific group’s behavioral
pattern, whereas robotic behavior still remained flexible (not predetermined). In
the further works we will expand this to more generic behavioral types and test
in a large robotic swarm.
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