Development of an Advanced Power Management for Autonomous Micro-Robots

Afshin Attarzadeh

M.Sc. Student, University of Stuttgart

Index

- Introduction
- Requirements
- Hardware
- Software
- What to be done yet
- Future

Introduction

- Swarm robots are a population made up of agents. (school of fishes)
 - Independent to each other
 - Performing a common task

- It is supposed to put lots of these bots into work in one experience
- One of the concerns is the problem of ENERGY!

Problem: Energy

- Each robot has two motors each consuming about 70-90 mA
- On each robot there are two microcontrollers connected to each other using a TWI BUS
- The applied Voltage is about 3.7V from a Li-Pol Battery which provides 250 mAh

Problem: Energy

- Some calculations:
 - The practically measured current consumption:
 - Standby: 6mA
 - Working: 200mA
 - The robot works about 1 hour and 15 minutes when it is in a full working mode.
 - Practically they work round 2 hours while they are not always in full working mode

Problem: Energy

- For longer experiences we need to provide the necessary power for the robots.
- Some of known and common resources:
 - Solar cells
 - Inductive power supply
 - Simple Recharge

Solar cells

- Each cell provides about 1/2 volt, 1.9mA in sunlight
- Based on current amount of Energy consumption of each robot (3.7 Volts, 200mA), we need a Matrix of 8x100 of such Solar cells.
- Problems:
 - The Robots are too small and are not cable of mounting such huge area on them
 - The working environment is not necessarily under sun-light
 - What about nights?

Inductive power supply

- In this approach robots are inside a very strong magnetic field.
- On each of them there is an Inductive element which inside this powerful magnetic field provides the necessary power for the robots

• Problems:

- To provide such amount of energy we need to provide a very strong and powerful magnetic field. Such magnetic field might be harmful for other electronic components inside
- The amount of Energy waste in this method is high

Simple Recharge

- In this method each robot gets recharged when the level of energy of the battery gets low.
- It can be done manually or automatically
- Problems:
 - In manual mode, It causes interruption in the current task of the robot.

Manual and Automatic Recharge

Goal: automatic recharging

 The Goal is to add the ability of recharge to the robots while they are doing their task on the field

What others recently have done

- MIT has developed such automatic recharging for swarm robots
- But there are differences between their work and ours:
 - The size of their robot are much bigger than ours
 - They benefit the usage of a camera to find the recharging station.

A video from MIT

Requirements

- A proper recharge circuitry to control the recharge process
- A docking station so that robots attach themselves to this station to recharge
- A software to control the level of energy
 - This software should also have the ability to find a free station to recharge

Hardware: Power control chips...

- Texas Instruments bq24200
 - Works specifically with current limited wall supplies
 - Max. Current supply: 500mA
 - Charge-in-progress, charge completion and fault conditions

Developed circuit

...Hardware: Power control chips

- Linear Technology LTC 4054-4.2
 - Programmable Current Up to 800mA
 - No MOSFET, sense resistor or Blocking Diode is required
 - Constant Current/Constant Voltage Operation with thermal regulation

Complete Charge Cycle (750mAh Battery)

Software

 How can robot understand that the energy level is now so low that it needs a recharge?

What to be done yet

- Optimizing the energy consumption on each element:
 - IR-LEDs
 - Micro Controllers
- Solving problems regarding lack of orientation
- Improvement of the design of the chassis to minimize the friction between gears

Future

 Development and Implementing software based on genetic programming to give the ability of partially learning and dynamic programming to the robots

Thanks for your Attention

Any Questions?