Infrared Sensor Simulation with Breve

The real sensor

TEFT4300
High radiant sensitivity
Wide viewing angle ±30°
Fast response times

IRSensor Simulation with Breve

Sensor approximation

Array of rays Intersection of rays and obstacles Apply sensor specific functions Sum all resulting ray values

IRSensor Simulation with Breve

Factors influencing the signal

Reflecting area Distance Angle of incidence Angular displacement Environment Surface Color Material

IRSensor Simulation with Breve

Intersection of rays and obstacles

For each plane of the shape For each ray Calculate intersection point Test if the point is inside the face

IRSensor Simulation with Breve

Angle of incidence

IRSensor Simulation with Breve

Distance

Signal weakes
over the distance
Linear

approximation

IRSensor Simulation with Breve

Angular displacement

 Sensor sensivity changes with the angle between the ray and the central sensor line

Figure 9. Relative Radiant Sensitivity vs. Angular Displacement

IRSensor Simulation with Breve

Indiscernible distance

 Central line but in a large distance
Or small distance but displaced from the central line

IRSensor Simulation with Breve

Communication

Robots can "see" each other
sensor in the appropriate direction
Quality
Distance

- Distance
- Angular displacement
- Other signals

IRSensor Simulation with Breve

Speedup

 Boundingboxes
Objects behind the sensor are ignored
Maybe you have some good ideas

