Specification and implementation methods for swarm robot scenarios

Martin Scheerer
Outline

- Part I:
 - Formal Notation
 - Scenario Bucket Brigade
 - Specification of Bucket Brigade

- Part II:
 - System Overview
 - Database
 - Evaluation Software
 - Results
Formal Notation – What & Why?

What?
- scenario goals
- NOT scenario implementation

Why?
- exact and unambiguous specification
- better comparability of implementations
- reuse of code for evaluation and implementation
Formal Notation

- virtual world, mathematical description
- vector space W, in general euclidean plane \mathbb{R}^2
- environment E
- objects O
- robots R subset of O
- properties for objects, ex.: $\text{pos}: O \rightarrow W$
- properties for environment, ex.: $f_{\text{pher}}: W \rightarrow [0,1]$
Scenario Bucket Brigade

- transportation of food
- 2 classes of robots: fast robots, slow robots
- transfer of food:
 - when a loaded slow robot meets a fast and empty robot
- locations of food source and nest are known
 → scenario goal:
 - maximize throughput
 - use transfer whenever possible
throughput: counting events (simple)

transfers: use Meeting from the notation:

precondition:

general: \(d(r_1, r_2) < \min \{ d_{\text{comm}}(r_1), d_{\text{comm}}(r_2) \} \)

specific: \((f_{\text{size}}(r_1) > f_{\text{size}}(r_2)) \) \&\& \(\text{NOT}(r_{\text{loaded}}(r_1)) \) \&\& \(r_{\text{loaded}}(r_2) \)

postcondition:

\(r_{\text{loaded}}(r_1) \) \&\& \(\text{NOT}(r_{\text{loaded}}(r_2)) \)
Part II: Implementation
System Overview 1

Central database

Simulation:
- Simulation state
- CSV + SQL-Commands
- Insert data
- Extract data (Logger)

Experiment:
- Evaluate and control
- Image data (Camera)
- Image data (Beamer)

Breve

Arena
System Overview 2

- Diagrams...
- Evaluations...
- Aggregation
- Bucket Brigade
- R (Statistics)
- Central database
every table contains ID, changeDate and other fields
Evaluation: Bucket Brigade Simulations

2 Parts:
- R with SQL: counting data by different criteria
 - objects transported
 - successful transfers
 - division of labor between slow and fast robots
- Java: analyses Meetings by checking pre- and postcondition.
 - missed transfers
 - time of transfer
Java evaluation

- used technology:
 - SQL Spatial Extension, ex.:
    ```java
    INSERT INTO geo
    VALUES (GeomFromText('POINT(1 1)'))
    ```
 - Java Topology Framework (JTS)
 - 2D spatial predicates and functions
 - cli-based
 - results are written back to central database
Results: Duration 1

- Motivation: random start positions
 → big variance in results
 but small variance is needed to see small effects

- Solution:
 - longer duration and
 - average of different start positions

How long is long enough?
Results: Duration 2
Other Results

- different communication types (filter on/off)
- different sensors (one ray, multi ray)
- effect of object transfer (transfer on/off)
Conclusions & Future Work

- formal notation:
 - aggregation and meeting based scenarios
 - not yet supported: distribution, formations, ...

- framework for automatic evaluation process:
 - scripts and cli-based components
 - offline

- scenarios:
 - optimization
 - experiments in real arena
Implementation of Bucket Brigade

- search source
 - no obstacle
 - obstacle
 - avoid
 - communicate
 - canceled
 - transfer negotiated
 - grab
 - object dropped
 - reached goal, dropped object
 - object dropped
 - canceled
- search goal
 - no obstacle
 - obstacle
 - communicate
 - canceled
 - transfer negotiated
 - drop
 - object dropped
 - avoided

empty

loaded