Swarmrobotics Workshop

MAXQ-Q Learning with MDLe
1. Introduction

What this lecture is about …

• Reinforcement learning
 – Hierarchical reinforcement learning
 – MAXQQ learning Algorithm
• MAXQ-Q learning with MDLe
 – Integration into MDLe
 – Needed Additions in MDLe
2. Reinforcement learning

Reinforcement Learning

- Agent learns a behaviour in a world
 - Unknown
 - Dynamic
 - Fully observable
- Learning through try and error
 - Looks at current state s
 - Performs action a
 - Looks at resulting state s' and receives reward r
2. Reinforcement learning

Example of Reinforcement Learning

- **Actions**
 - Movement (N, E, S, W)
 - Pickup
 - Putdown

- **Rewards**
 - Action -1
 - Successful Putdown +20
 - Unsuccessful Putdown -10
 - Unsuccessful Pickup -10
2. Reinforcement learning

Reinforcement Learning

- **Exploration**
 - Tries action and gets Reward/Penalty
 - Better action selection in future
- **Exploitation**
 - Tries to maximize reward
- **Find an optimal policy**
 - Optimal value function
2. Reinforcement learning

Optimal value function

- Passenger at location Y (0,0) Destination B (3,0)
2. Reinforcement learning

Drawbacks of Reinforcement Learning

- Many training iterations are needed
 - >100000 for complicated tasks
 - Solutions:
 - Hierarchical Reinforcement Learning
 - Model Based Reinforcement Learning
- State space grows exponentially with state variables
 - Bad scaling
- Learned knowledge can’t be transferred to similar tasks
 - Hierarchical Reinforcement Learning
 - MAXQ value function decomposition
3. MAXQ

MAXQ learning

- Task decomposition
 - Discover and exploit hierarchical structure
 - Programmer defines hierarchy
- Value Function Decomposition
 - Value function of subtask + Completion function
- State Abstraction
 - Irrelevant variables
 - Funnel abstractions
 - Structural constraints
3. MAXQ

Task decomposition

- Root
 - Get
 - Pickup
 - North
 - Put
 - Navigate(t)
 - Putdown
 - East
 - West
MAXQ value function decomposition

\[V(root, s) = V(west, s) + C(navigate(Y), s, west) + C(get, s, navigate(Y)) + C(root, s, get). \]
3. MAXQ

MAXQQ learning

Function MAXQQ(state s, subtask p) returns float

Let TotalReward = 0

while p is not terminated do

 Choose and execute action a

 if a is primitive
 Observe one-step reward r
 else
 r := MAXQQ(s,a), invokes subroutine a and returns total reward received during a

 TotalReward := TotalReward + r

 if a is a primitive
 \[V(a, s) = (1 - \alpha)V(a, s) + \alpha r \]

 else
 a is a subroutine
 \[C'(p, a, s) := (1 - \alpha)C(p, s, a) + \alpha \max_{a'}[V(a', s') + C(p, s', a')] \]

end // while

return TotalReward

end
3. MAXQ

MAXQ learning

\[
V(a, s) = (1 - \alpha)V(a, s) + \alpha r
\]

\[
C(p, a, s) := (1 - \alpha)C'(p, s, a) + \alpha \max_{a'}[V(a', s') + C'(p, s', a')]
\]
4. MAXQ with MDLe

Integration in MDLe

Root

Get

Put

Navigate(t)

Pickup

North

East

South

West

Putdown
4. MAXQ with MDLe

Implementation in MDLe

- RUNION
 - Goal State
 - Temperature (exploration vs exploitation)
 - $C(p,s,a)$
- ATOM
 - Reward
 - $V(s)$
 - $V(a,s)$
4. MAXQ with MDLe

Integration in MDLe

- Correct order of sequence
- Reward propagation
- State representation