Development of cooperative behavioral patterns for Swarm robotic scenarios

Author: Victor Prieto Martinez
Two main goals

• Develop a simulation system for micro-robots (~3 Months)
 • For Jasmine-III model.
 • Potentially for other micro-robots.

• Create new behavioral patterns for Jasmine-III robot (~3 Months)
 • Try them in the simulation system.
 • Run them in the real world.
Development of cooperative behavioral patterns for Swarm robotic scenarios.

Simulation System

• 3D model for micro-robots
 · Thought for Jasmine-III but scalable for other robots.
 · Usable for ~100 robots.
 · Easy for new users.

• Based on Breve (Steve language)
 · Open-source 3D simulation environment.
 · OpenGL display engine.
 · Easy to build 3D simulations and artificial life.
Why is important a simulation?

• The microcontroller life is limited (~10,000 times).

• The robots are a limited resource.
• Difficult to reprogram a lot of robots.
Development of cooperative behavioral patterns for Swarm robotic scenarios.

Why another simulation?

- Several attempts were not valid.
- We need a simulation which reflects the real world.
- Easy to insert new behavioral patterns.
Why another simulation?

• Strange behaviors in the real world.

• Simulation must be equal to the real world.
• Even the strange effects.
Simulation parts

• Physical sensors
 • Proximity sensors, distance sensors, touch sensors, communication sensors, color sensors…
• Body
 • Physical model vs. Logic model.
• Motion
 • Move, stop, rotate, ...
• Stage
• Communication between robots
 • Essential part in cooperative behaviors.
Physical sensors

- Different types: Infrared, ultrasound, RF, laser,…
- Infrared Sensors
 - In Jasmine-III robot

- We can model sensors as a ray, as a cone, etc.
- We must model them as realistic as possible.
Simulated motion model

- Logic model
- Avoid physical simulation for motion
 - Wheels
 - Motors
 - Gravity center
Development of cooperative behavioral patterns for Swarm robotic scenarios.

Communication model

- Essential in cooperative behavioral patterns.
- In Jasmine-III: Based on IR sensors and confirmation protocol.
- Correct physical sensor model is extremely important.
Simulated communication model

- Requirements:
 - Communication model as realistic as possible.
 - Each robot has a queue with messages received.

- How does the communication work?
 - Establish a communication channel for bi-directional communication.
 - Each robot write in the queue of its neighbor.
 - Every message must be confirmed.
Development of cooperative behavioral patterns for Swarm robotic scenarios.

What is done?

- Stage model completed.
- Proximity sensor (infrared sensors) model.
- Basic motion.
- Random movement behavior.

What is to do?

- To unify different simulation implements.
- Add new sensor models (color sensor, light sensor,…).
- Communication between robots.
Development of cooperative behavioral patterns for Swarm robotic scenarios.

Simulation at the present time
To develop new behavioral patterns

- Different possibilities based on practical scenarios
 - New swarm game.
 - Cooperative perception.
 - Reach a common goal in a cooperative way.
- Minimal capabilities implemented in Jasmine-III
 - Motion.
 - Proximity Sensor.
 - Avoiding.
 - Communication.
- To make effort an behavioral (communication) part
How to make collective behavior?

• Five steps using Jasmine-III SDK.
 1. Create scenario. Real scenario or virtual scenario.
 2. Define roles. Who is who?
 3. Define communication signals.
 5. Program roles. Write C/C++ code.
Test new patterns

• First in the simulation system
 - Prove all the basics.
 - Debug the main problems: communication between robots, the robots must follow the roles, etc.

• After, few of them in the real world
 - Check and fix real problems.
 - Feedback for the simulation system.
Example collective behavior

- Communication street
 1. Scenario: link between two points for transmitting messages from one point to other or for moving along the street.
 2. Define roles: three roles.
 - Landmark that indicates the start point of the street.
 - Communication agents.
 - Scout agent.
 3. Define communication signals:
 - During building the street.
 - Street is finished.
 - Navigation along the street.
 4. Describe roles: graphics to put logic into behavior.
 5. Program roles: translate the graphics in C/C++ code.
Development of cooperative behavioral patterns for Swarm robotic scenarios.

Communication street

University of Stuttgart. Institute of Parallel and Distributed Systems (IPVS).
Development of cooperative behavioral patterns for Swarm robotic scenarios.

What is done?

- Random movement behavior (simulation and real world)
- More complex patterns are made or are being developed by other Master Thesis.

What is to do?

- Create new collective behaviors following the Jasmine-III SDK.
- Open ideas.
Development of cooperative behavioral patterns for Swarm robotic scenarios.

Questions

• Questions (?)